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Abstract: Given that global amounts of waste are growing rapidly, it is extremely important to
determine what amount of waste will be generated in the near future. Accurate waste forecasting is
also important for planning and designing a sustainable municipal solid waste (MSW) management
system. For that reason, there is a need to build a model to predict the amount of MSW generated in
the near future. Based on previous research, artificial neural networks (ANN) show better results
in predicting waste generation compared to other mathematical models. In this research, an ANN
model using the iterative algorithm Broyden–Fletcher–Goldfarb–Shanno (BFGS) for the prediction
of MSW fractions, based on the socio-demographic characteristics, economic and industrial data
obtained in Croatia and summarized data of the member states of EU (EU-27 from 2020), showed
good predictive capabilities. The coefficient of determination during the training cycle for the output
variables; household and similar waste (HHS), paper and cardboard waste (PCW), wood waste (WW),
textile waste (TW), plastic waste (PW) and glass waste (GW) were 0.993; 0.997; 0.999; 0.997; 0.998;
and 0.998, respectively, while reduced chi-square, mean bias error, root mean square error, mean
percentage error, average absolute relative deviation and sum of squared errors were found low. In
this paper, Yoon′s method of interpretation shows the relationships between socio-demographic data
and the amount of generated waste. The results indicate that the lowest level of education shows a
negative impact on observed waste-types calculations, with a relative impact between −9.889 and
−4.467%. The most pronounced positive impact on the calculation of HHS, PCW, WW, TW, PW and
GW was observed for year variable, gross domestic product, exports of goods and services, imports
of goods and services, wages and salaries, secondary income, arrivals in collective accommodation
establishments, overnight stays in collective accommodation establishments and exports of petroleum
and petroleum products to partner countries, with a relative influence of 4.063–7.028; 2828–4851;
5240–6197; 5.308–6.341; 4290–4810; 4533–5805; and 4.345–4.493, respectively. The obtained results
indicate that the amount of HHS waste at the EU-27 level in 2025 will decrease by approximately
18% compared to the data from 2018. The quantities of other observed recyclable types of waste
will increase by 34% for PCW, 310% for WW, 40% for TW, 276% for PW and about 67% for GW. The
amount of waste generated provides the basic information needed to plan, operate and optimize
the waste management system. It could also help in the transition to an environmentally friendly
and economically profitable circular economy. The model created in this research could also help
with the system of separate waste collection, which would lead to more efficient recycling and the
achievement of the set goals for recycling 55% of municipal waste by 2025.
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1. Introduction

Waste and its production are an inevitable result of human existence. Waste generated
in our households, schools, hospitals and businesses is called municipal solid waste (MSW).
MSW consists of everyday items that we use and throw away. Discarded products such
as packaging, old furniture, clothes, leftover food, newspapers, batteries and more make
up MSW. It is very closely linked to people, because people′s behavior determines when
a certain item becomes a waste. Therefore, MSW reflects the culture of the people who
produce it and has an impact on people′s health and the environment around them. MSW
deserves special attention because of its impact on the environment at local, regional and
global levels [1–3].

Although MSW in the EU accounts for only between 7% and 10% of total waste
generated, it is one of the most difficult categories of waste to manage, often managing
more than one third of public sector financial efforts to reduce and control pollution [4,5]. It
is estimated that in 2020, 505 kg of MSW were generated per capita in the European Union
(EU) [5].

Croatia is the last country to join the EU. In 2020, Croatia generated about 1.7 tons of
MSW. There is no official data in the EU-27 yet, but based on forecasts, it is estimated that
225 million tons of MSW were generated at EU-27 level in 2020 [6]. Accurate information
on the quantity of waste generation and its composition is essential for planning proper
waste management [7]. Environmentally sound, safe and sustainable MSW management
should be a top priority in any responsible country or society. Proper and sustainable waste
management is particularly important for the EU-27 to achieve targets such as reducing
methane emissions by 30% by 2030 and climate neutrality by 2050 [8,9]. To achieve such
targets, the European Waste Directive (2008/98/EC) [10] sets goals to contribute to the
development of sustainable waste management in the EU. Thus, among other things, the
goal is set by which the Member States should ensure the conditions for the reuse and
recycling of municipal waste by 2025, with a recycling rate of at least 55%. In Croatia, the
recycling rate in 2020 was 34% [11].

Achieving the EU′s targets requires strong momentum and acceleration in the tran-
sition to a circular economy and sustainable waste management. The implementation of
sustainable management should be guided by the principles of the waste hierarchy. The
principles of the waste hierarchy recommend prioritizing from the most desirable waste
prevention option at the top, to disposal as the least desirable option at the bottom. In this
way, the waste hierarchy helps to shift waste as a problem to waste as a resource and, at
the same time minimize the impact of waste on the environment and health to improve
resource efficiency [12–18]. In line with the pyramid of the waste hierarchy, the long-term
goal of EU policy is to reduce the amount of waste generated and, where unavoidable, to
promote it as a resource by achieving higher recycling rates. The model created by this
research could help predict the amount of MSW generated. The model created could also
help establish better waste management.

Waste generation prediction models have been developed with increasing frequency
recently. So far, various models have been used to predict waste generation, such as expert
systems, evolutionary programming, artificial neural networks (ANN), multiple linear
regression, central composite design and combinations of these tools [19–22]. In this re-
search, ANN will be used because compared to other models, neural networks are relatively
insensitive to incomplete information and therefore allow coping with higher degrees of
uncertainty. ANN are mathematical models of information processing that function simi-
larly to the human brain and are used to solve artificial intelligence problems. ANN are
non-linear tools that use a set of input parameters from which the interconnected elements
are calculated, while one or more output parameters represent the final result [22,23].

The management of MSW has become a critical task for municipal cites, based on the
increasing daily generation of MSW. The known database records of solid waste generation
are trusted and helpful as essential data to avoid environmental pollution, and improve
management planning [24–30]. Now, in the era of urbanization and social transformation,
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not only has the quality of MSW changed, but the quantity has also increased. Excessive
generation of solid waste and improper management severely affect environmental and
human health [30–37].

The successful planning of waste management system strongly depends on an accurate
projection and prediction of MSW quantities, keeping in mind that the future predictions
of MSW generation serve as a basis in the development of the existing waste management,
infrastructure connections, MSW quantity optimization and sustainable development.
Inaccurate predictions could lead to numerous problems, such as inadequate infrastructure
for the collection, transportation, landfilling or MSW processing [38–41].

In recent years, mathematical models in the form of ANN has gained popularity, as ev-
idenced by its use in the study of models for predicting the MSW generation. Moreover, the
ANN approach is well known for its suitability in estimating nonlinear functions [19–22].
Before computation, the observed database should be normalized to improve the func-
tioning of the ANN. During this recurrent computation, the input data is permanently
transmitted to the network [42,43].

The aim of the paper is to show whether it is possible to design a model with a
satisfactory degree of accuracy using data on Croatia and pooled data on EU member
states, and whether there are differences (and if so, what they are) between these two sets
of data. The paper was prompted by the fact that Croatia, as the youngest EU Member
State, had to harmonize its national legislation with the EU acquit before joining the EU,
including in the area of waste management. Nevertheless, Croatia lags behind other
EU Member States in certain issues and segments of waste management and does not
comply with certain regulations. On the other hand, forecasting the amount of waste
generated can help to identify the most appropriate pattern of waste management and at
the same time assist decision-makers in updating and modifying legal acts and regulations
to enable the transition to an environmentally acceptable and economically cost-efficient
circular economy.

The author′s initial hypothesis is that ANN can be a reliable tool that can be used to
create a mathematical model for predicting the amount of MSW at the EU and national level.
It is also assumed that the accuracy of forecasting quantities depends on the selection of
input socio-demographic, economic and industrial indicators, and the results will indicate
the parameters that have the greatest impact on waste generation.

2. Materials and Methods

In this paper, ANN is used as a tool to develop a model to predict the generation
of household and similar waste (HHS), paper and cardboard waste (PCW), wood waste
(WW), textile waste (TW), plastic waste (PW) and glass waste (GW). In this paper, only
data for MSW has been used; dataset covered a period of 25 years from 1995 to 2019.

2.1. ANN Modeling

For ANN modeling to predict the parameters of MSW (HHS, PCW, WW, TW, PW
and GW), a multilayer perceptron network (MLP) was used, consisting of three layers
(Input, Hidden and Output), based on the socio-demographic characteristics, economic and
industrial data obtained in Croatia and in the EU countries. The data used were: Year, POP,
LE, ELP, ELS, ELSP, ELT, GDP, RGDP, EGS, IGS, EMP, TEMP, WS, MEI, SIP, ATA, NST, EOP,
ABH, PRP, RRMW, DISP, RBW, GMWK, GMWT and CNT. Listed socio-demographic and
economic parameters were used due to their influence on the amount of waste generation.

For the development of the model, the above data (YEAR, POP, LE, ELP, ELSP, ELT,
GDP, RGDP, EGS, IGS, EMP, TEMP, WS, MEI, SIP, ATA, NST, EOP, ABH, PRP, RRMW, DISP,
RBW, GMWK, GMWT and CNT) were used in the form of total annual data. The used data
set consists of data on Croatia and pooled data on EU Member States. The total dataset
covered a total period of 25 years from 1995 to 2019. The data collected were numerical
values and categorical variables. The data used to develop the model can be found in the
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Supplementary Tables S1 and S2. The data were taken from the official website of the EU
Statistical Office.

The collected database for the creation of ANN was stochastically divided into training,
cross-validation and testing data (with 60%, 20% and 20% of the data, respectively). A
number of different topologies were used, where the number of hidden neurons varied
from 5 to 20, and the training process of the network was performed 100,000 times with
random initial values of weights and biases. The BFGS algorithm was used as an iterative
method to solve the unconstrained nonlinear problems in ANN modeling [44].

The optimization process was performed based on validation error minimization.
It was assumed that the training was performed satisfactorily when the learning and
cross-validation curves reached zero.

Coefficients related to the hidden layer (weights and biases) were introduced into
matrices W1 and B1. Similarly, coefficients related to the output layer were described in
matrices W2 and B2. The neural network model (Y) can be represented using a matrix
notation [45]:

Y = f1(W2 · f2(W1 · X + B1) + B2) (1)

where, f 1 and f 2 are transfer functions in the hidden and output layers, respectively, and X
is the matrix of input variables;

The weight coefficients were resolved and recalculated throughout the ANN learning
cycle by applying the rationalization operation to minimize the error between the network
and the collected outputs [42,46,47]. During the ANN calculation, sum of squares (SOS)
were evaluated and the results of this calculation were used to adjust the weight coefficients
in order to accelerate the computation and to consolidate convergence [48]. The perfor-
mance of the model ANN was examined throughout the calculation using the coefficients
of determination.

Statistical investigation of the data has been performed by the Statistica 10 software
(Statistica, 2010, Hamburg, Germany).

2.2. Global Sensitivity Analysis

Yoon′s interpretation method was used to determine the relative influence of input
data on socio-demographic characteristics, economic and industry data [49]. This method
was applied based on the weight coefficients of the developed ANN:

RIij(%) =

n
∑

k=0
(wik · wkj)

m
∑

i=0

∣∣∣∣ n
∑

k=0
(wik · wkj)

∣∣∣∣ · 100% (2)

where: w—weight coefficient in ANN model, i—input variable, j—output variable, k—
hidden neuron, n—number of hidden neurons and m—number of inputs.

2.3. The Accuracy of the Model

Numerical verification of the obtained ANN model was tested using the coefficient of
determination (r2), reduced chi-squared (χ2), mean bias error (MBE), root mean square error
(RMSE) and mean percentage error (MPE), average absolute relative deviation (AARD) and
sum of squared errors (SSE) [50].

χ2 =

N
∑

i=1
(xexp,i − xpre,i)

2

N − n
(3)

RMSE =

[
1
N
·

N

∑
i=1

(xpre,i − xexp,i)
2

]1/2

(4)
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MBE =
1
N
·

N

∑
i=1

(xpre,i − xexp,i) (5)

MPE =
100
N
·

N

∑
i=1

(

∣∣xpre,i − xexp,i
∣∣

xexp,i
) (6)

SSE =
N

∑
i=1

(xpre,i − xexp,i)
2 (7)

AARD =
1
N
·

N

∑
i=1

∣∣∣∣∣ xexp,i − xpre,i

xexp,i

∣∣∣∣∣ (8)

where xexp,i were experimental values and xpre,i were the model predicted values and N
and n are the number of observations and constants, accordingly.

3. Results and Discussion

The constructed optimal neural network model showed promising generalization
properties for the collected database and could be used to accurately predict the settlement
waste: 7 (network MLP 25-7-6) to obtain the highest values of r2 (during the training cycle,
r2 for output variables HHS, PCW, WW, TW, PW and GW were 0.999, 1.0, 1.0, 1.0, 0.999
and 0.999, respectively, Table 1).

Table 1. Artificial neural network model summary (performance and errors), for training, testing and
validation cycles.

Network
Name

Performance * Error Training
Algorithm

Error
Function

Hidden
Activation

Output
ActivationTrain. Test. Valid. Train. Test. Valid.

MLP
25-7-6 0.999 1.0 1.0 0.0 0.003 0.006 BFGS 85 SOS Exponential Identity

* Performance terms represents the coefficients of determination, while error terms specify a lack of data fit for the
ANN model.

Table 2 shows the coefficients of matrix W1 and vector B1 (exhibited in the bias column),
and Table 3 shows the elements of matrix W2 and vector B2 (bias) for the hidden layer used
for the calculation in Equation (2).

Table 2. Elements of matrix W1 and vector B1 (presented in the bias row).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

YEAR −0.092 −0.080 −0.129 −0.161 −0.197 −0.170 −0.192 0.003 −0.185 −0.069 0.119 0.537 2.282 −0.145
POP 0.559 0.466 0.472 0.503 0.558 0.569 0.527 0.291 0.659 0.562 0.136 0.033 −0.461 0.611
LE −0.011 −0.020 0.073 0.160 0.120 0.023 0.087 −0.207 0.280 −0.113 −0.160 −0.106 −0.417 0.110

ELP 0.026 −0.272 −0.334 −0.325 −0.201 0.071 −0.019 −0.158 −0.113 0.059 −0.609 −1.114 −2.451 −0.019
ELS −0.118 0.042 −0.082 −0.528 −0.266 −0.163 −0.172 −0.065 −0.346 −0.180 −0.065 −0.237 −0.169 −0.082

ELSP −0.089 0.052 −0.248 −0.834 −0.381 −0.113 −0.140 −0.018 −0.604 −0.238 −0.263 −0.915 −1.718 −0.080
ELT −0.065 −0.101 −0.107 −0.017 −0.078 −0.115 −0.100 −0.232 0.062 0.002 −0.259 0.034 0.382 −0.063
GDP 0.447 0.501 0.521 0.482 0.501 0.525 0.505 0.359 0.646 0.493 0.310 0.254 0.711 0.519

RGDP 0.350 0.227 0.233 0.332 0.317 0.313 0.325 0.138 0.475 0.368 0.083 0.122 0.329 0.347
EGS 0.480 0.454 0.454 0.477 0.487 0.505 0.490 0.400 0.580 0.474 0.391 0.424 1.287 0.549
IGS 0.497 0.427 0.475 0.438 0.473 0.486 0.512 0.394 0.624 0.524 0.415 0.456 1.305 0.569

EMP 0.518 0.462 0.479 0.511 0.515 0.500 0.500 0.334 0.668 0.562 0.187 0.118 −0.028 0.582
TEMP 0.516 0.480 0.495 0.471 0.551 0.516 0.538 0.365 0.677 0.552 0.184 0.167 0.112 0.540

WS 0.533 0.469 0.479 0.486 0.499 0.508 0.498 0.365 0.595 0.479 0.318 0.325 0.832 0.569
MEI 0.166 0.007 0.072 0.241 0.179 0.146 0.161 −0.039 0.354 0.214 −0.073 0.089 0.447 0.201
SIP 0.490 0.456 0.418 0.411 0.444 0.464 0.482 0.334 0.568 0.487 0.302 0.317 0.727 0.533
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Table 2. Cont.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ATA 0.517 0.449 0.479 0.459 0.491 0.530 0.502 0.408 0.627 0.492 0.349 0.400 1.114 0.535
NST 0.488 0.422 0.423 0.459 0.486 0.456 0.518 0.345 0.615 0.486 0.346 0.377 1.122 0.525
EOP 0.511 0.466 0.444 0.462 0.539 0.576 0.524 0.341 0.646 0.526 0.285 0.208 0.405 0.563
ABH 0.529 0.508 0.505 0.487 0.506 0.552 0.542 0.303 0.693 0.552 0.073 −0.071 −0.731 0.603
PRP 0.524 0.454 0.409 0.483 0.526 0.555 0.509 0.230 0.663 0.521 −0.066 −0.234 −1.547 0.568

RRMW 0.301 0.364 0.269 0.225 0.312 0.340 0.266 0.174 0.369 0.335 −0.019 −0.060 −0.516 0.340
DISP 0.469 0.469 0.424 0.429 0.491 0.513 0.458 0.177 0.632 0.534 −0.117 −0.263 −1.696 0.533
RBW 0.435 0.417 0.429 0.476 0.462 0.400 0.485 0.269 0.618 0.431 0.269 0.242 0.645 0.503

GMWK −0.134 −0.390 −0.270 −0.004 −0.153 −0.155 −0.178 −0.398 0.077 0.025 −0.553 −0.232 −0.622 −0.180
GMWT 0.558 0.501 0.485 0.503 0.575 0.539 0.506 0.286 0.661 0.540 0.153 0.097 −0.124 0.564

CNT(CRO) −0.630 −0.683 −0.919 −1.313 −0.961 −0.684 −0.708 −0.563 −1.160 −0.707 −0.782 −1.349 −2.141 −0.699
CNT(EU) 0.527 0.471 0.488 0.481 0.533 0.528 0.522 0.299 0.654 0.541 0.124 −0.002 −0.530 0.605

Bias −0.128 −0.232 −0.410 −0.846 −0.468 −0.105 −0.185 −0.247 −0.441 −0.154 −0.687 −1.366 −2.637 −0.091

Table 3. Elements of matrix W2 and vector B2 (presented in the bias column).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Bias

HHS 0.488 0.505 0.235 0.041 0.080 0.360 0.139 0.521 −0.137 0.573 0.353 0.462 0.548 0.258 −0.859
PCW 0.378 0.352 0.147 −0.027 −0.002 0.268 0.105 0.486 −0.110 0.519 0.232 0.190 0.646 0.273 −0.694
WW 0.282 0.108 −0.180 −0.377 −0.297 0.314 0.052 0.663 −0.522 −0.074 0.459 0.046 4.104 0.065 −0.331
TW 0.305 0.228 0.081 −0.078 −0.066 0.235 0.129 0.328 −0.178 0.414 0.202 0.203 0.673 0.215 −0.518
PW 0.347 0.336 0.171 0.023 0.001 0.231 0.144 0.366 −0.080 0.543 0.221 0.327 0.307 0.305 −0.670
GW 0.316 0.325 0.096 −0.142 −0.079 0.285 0.116 0.472 −0.273 0.444 0.288 0.410 1.281 0.139 −0.590

The obtained ANN model for predicting the outcome variable was complex (230 weights-
biases) corresponding to the increased degree of nonlinearity in the data [51,52].

The correctness of the developed model could be measured visually by the scattering
of the specific points from the diagonal line in Figure 1. For the model ANN, the expected
quality was exceptionally close to the collected data in most cases in terms of r2 values.
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The estimate of the quality of fit between the collected data and the outputs computed
by the model, expressed as the ANN power (sum of r2 between measured and computed
output variables) during the training, testing and validation steps, is explained in Table 4.

Table 4. The “goodness-of-fit” tests for the formulated ANN model.

Output Variable χ2 RMSE MBE MPE SSE AARD r2

HHS 7.6 × 10−12 1.2 × 10−6 1.2 × 10−7 0.270 2.2 × 10−11 1.3 × 10−5 0.993
PCW 2.2 × 10−11 2.1 × 10−6 −9.6 × 10−7 5.167 5.1 × 10−11 2.6 × 10−5 0.997
WW 1.1 × 10−11 1.5 × 10−6 3.9 × 10−7 39.469 3.0 × 10−11 1.4 × 10−5 0.999
TW 6.8 × 10−14 1.2 × 10−7 1.0 × 10−8 354.591 2.0 × 10−13 1.2 × 10−6 0.997
PW 2.8 × 10−12 7.5 × 10−7 −3.0 × 10−7 7.434 7.1 × 10−12 7.8 × 10−6 0.998
GW 2.4 × 10−12 7.0 × 10−7 −2.8 × 10−7 4.911 6.1 × 10−12 7.5 × 10−6 0.998

The ANN model predicted the data sufficiently well for a wide range of process
variables. For the ANN model, the predicted values were very close to the measured
values in most cases, with respect to the r2 values. The estimated SOS values of the ANN
model were of the same order of magnitude as the errors reported in the literature for
output variables [42,47]. The lack of fit of the ANN model did not reach a significant level,
implying that the model predicted the output variables satisfactorily. An increased r2 value
indicated that the ANN model fitted the data well [19,20]. The residuals of a fitted model
were observed and the corresponding prediction of response was calculated using the
ANN regression model. The residuals approximated the random errors that made the
relationship between the explanatory variables and the outcome variables, according to
a statistical relationship. The residuals appeared to behave randomly, indicating that the
model fit the data well (Table 5).

Table 5. The residual analysis for the developed ANN model.

Output Variable Skew Kurt Mean StDev Var

HHS −0.642 2.087 1.2 × 10−7 1.3 × 10−6 1.6 × 10−12

PCW −1.080 −0.064 −9.6 × 10−7 1.9 × 10−6 3.6 × 10−12

WW −0.027 1.737 3.9 × 10−7 1.5 × 10−6 2.1 × 10−12

TW 0.394 1.910 1.0 × 10−8 1.2 × 10−7 1.4 × 10−14

PW −1.300 0.767 −3.0 × 10−7 7.1 × 10−7 5.1 × 10−13

GW 0.102 0.501 −2.8 × 10−7 6.6 × 10−7 4.4 × 10−13

Residual analysis of the developed model was also performed (Table 5). Skewness
measures the deviation of the distribution from normal symmetry. If the skewness is signif-
icantly different from zero, then the distribution is asymmetric, while normal distributions
are perfectly symmetric. Kurtosis measures the “peakedness” of a distribution. If the
kurtosis is significantly different from zero, then the distribution is either flatter or more
peaked than the normal distribution; the kurtosis of the normal distribution is zero.

Until now, many research projects have been devoted to the study of forecasting the
amount of MSW with different mathematical models. Given that the mechanism of MSW
generation is a very complex process and that there is a connection between socioeconomic
factors and the generation of MSW, nonlinear regression models show greater accuracy than
linear ones. Therefore, in recent times, the use of ANN in the prediction of waste generation
is increasingly common, which also show better results [16]. Because of the above, no other
mathematical models were used in this research, but only ANN. Furthermore, so far, many
researchers have successfully applied ANN in MSW forecasting in their local area, and most
MSW forecasting models are based on data from a specific region or data for a specific city.
Thus, ANNs were also used to estimate the production of MSW in the city of Zagreb [16].
In the aforementioned research, a mathematical model was developed for estimating the
production of MSW for the period from 2013 to 2016. The input data used are divided into
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two groups: socioeconomic indicators and waste management indicators. This study shows
how socioeconomic variables such as total number of households, number of tourists and
wages can be effectively used to predict different fractions of waste, such as paper and
cardboard, mixed municipal waste and bulky waste. The overall r2 values were between
0.710 and 0.997, which confirmed the predictive capabilities of the model. The authors
emphasized that a limited amount of data was used in this work, but the mathematical
model nevertheless proved capable of achieving sufficiently good results. Given that waste
generation is influenced by a number of parameters and that the conditions and methods
of generation of MSW can differ between regions, a small number of studies on forecasting
municipal waste on a larger scale have been conducted so far (Wu et al., 2020). The author′s
desire in this research was to expand the limits of the use of ANN from local and regional
areas. Therefore, this work aims to predict the amount of generated MSW in all EU-27
member states.

4. Global Sensitivity Analysis—Yoon’s Interpretation Method

The EU has 27 member states, and there are big differences between the members.
These differences include economic, demographic, social, economic and other parameters,
and there is also a big difference in the amount of municipal waste generated. Variations
in the amount of municipal waste generated in the EU member states reflect differences
in consumption patterns and economic wealth, but also depend on the way municipal
waste is collected and managed. In this work, 27 input parameters were used, which, based
on previous research, are known to influence the generation of waste. In this section, the
influence of 27 input variables on HHS, PCW, WW, TW, PW and GW was investigated,
Figure 2. The CNT variable showed the most negative influence on HHS, PCW, WW, TW,
PW and GW calculations, with a relative influence ranging from −10.058 to −8.264%. The
ELP variable also showed a negative influence on the HHS, PCW, WW, TW, PW and GW
calculations, with a relative influence between −9.889 and −4.467%, Figure 2.

The most pronounced positive influence on HHS, PCW, WW, TW, PW and GW cal-
culation variables was observed for YEAR, GDP, EGS, IGS, WS, SIP, ATA, NST and EOP,
with relative significance of: 4.063–7.028; 2.828–4.851; 5.240–6.197; 5.308–6.341; 4.290–4.810;
4.533–5.805; and 4.345–4.493, respectively, Figure 2.

The GDP parameter has the most pronounced positive effect on waste generation.
Accordingly, GDP will have a significant impact on increasing waste. This is in line with
the research conducted so far by Namlis and Komilis (2019) [27], who also confirmed that
the higher the economic growth, the more society spends, and, consequently, the higher the
waste production. In conjunction with GDP, other parameters such as EGS, IGS and EOP
also have a positive effect on waste generation. This is in line with previously conducted
studies that confirmed that the amount of waste generated in a region or country is directly
proportional to economic growth and consumption levels [27,28]. Many other studies
conducted so far have shown that income has a positive influence on the generation of
municipal waste. The positive influence of the parameters WS and SIP can be explained by
the fact that residents in low-income countries generally consume fewer goods and generate
less waste than in developed countries. This is because daily spending depends on the
amount of money available for spending. The more money is available for consumption, the
greater the consumer power, and at the same time more (municipal) waste is generated. The
obtained results are in line with a study conducted in Brazil where a statistically significant
linear correlation was observed between per capita income and annual municipal waste
production (r2 = 0.391) [28].
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In this study, tourism (variables ATA and NST) also showed a positive correlation with
the amount of waste generated, Figure 2. Many studies have confirmed that MSW increases
with seasonal population in tourist areas or regions. Therefore, it is particularly important
in these areas to collect, transport, process and finally dispose of municipal waste in an
environmentally friendly, safe and cost-effective manner. In addition to environmental
and health problems, improper waste management can also have a negative impact on the
attractiveness of a tourist destination [29,30].

It can be concluded that the results of this study are in line with other studies that also
confirmed that the number of people (tourists), climatic and economic conditions play an
important role in the rate of waste generation [31–33].

It should be noted that with this work, the authors have proven that ANN are capable
of obtaining satisfactory forecasting data in a wider area such as the EU area, thus moving
away from previous predictions that were mostly of a local or regional nature. In addition,
this research confirmed the influence of parameters such as GDP and tourism on waste
generation, which can be useful information in the further improvement of the waste
management system.

It is also important to emphasize that the amount of MSW waste generated could be
influenced by other parameters such as life expectancy, education level, financial devel-
opment and inequality within the population, changes in employment/unemployment,
migration and others. The choice of parameters for building a model depends on the
purpose and the research area. Similarly, economic or epidemic crises and deterioration of
living standards also affect the amount of municipal waste generated [27,34].

Tables 6 and 7 show the amount of waste that will be generated in the period from 2020
to 2025 by type of waste. Based on the obtained data, it can be concluded that the amount
of HHS will decrease, while the amount of recyclable municipal waste (PCW, WW, TW,



Sustainability 2022, 14, 10133 10 of 13

PW and GW) will increase. The above applies both to data at the EU-27 level and to data
in Croatia. This shows similarities in the data, which is also logical, with the assumption
that similar data would be obtained by comparing data for other EU member states. The
above may also indicate a change in citizens′ awareness and an increasing amount of waste
separation. Separate collection of types of waste such as bio-waste and paper is extremely
important if the set recycling rates are to be reached.

Table 6. Estimated amounts of generated municipal waste for the EU-27, in thousands of tons.

YEAR HHS PCW WW TW PW GW

2019 118,483.6 39,526.2 42,241.4 1411.6 16,982.8 16,147.1
2020 116,065.8 39,074.9 40,816.1 1267.5 17,464.0 16,381.0
2021 113,648.0 38,623.5 39,390.7 1123.3 17,945.1 16,615.0
2022 111,230.2 38,172.2 37,965.4 979.2 18,426.3 16,849.0
2023 108,812.4 37,720.9 36,540.1 835.0 18,907.4 17,082.9
2024 106,394.6 37,269.5 35,114.7 690.8 19,388.5 17,316.9
2025 103,976.8 36,818.2 33,689.4 546.7 19,869.7 17,550.8

Table 7. Estimated amounts of generated municipal waste for Croatia, in thousands of tons.

YEAR HHS PCW WW TW PW GW

2019 1303.9 202.6 12.1 2.5 51.5 54.9
2020 1287.3 218.7 13.0 2.7 55.9 59.1
2021 1270.7 234.8 14.0 2.9 60.3 63.4
2022 1254.1 250.8 15.0 3.1 64.7 67.6
2023 1237.6 266.9 15.9 3.3 69.1 71.8
2024 1221.0 283.0 16.9 3.5 73.4 76.0
2025 1204.4 299.1 17.9 3.7 77.8 80.2

5. Conclusions

In order to make the waste management system more efficient, it could be helpful
to know the quantities generated. The main objective of this research was to construct a
model to predict the amount of MSW using an ANN. The input for the development of
the model was socio-demographic, economic and industrial data obtained in Croatia, as
well as summarized data from the EU. Data from a 25-year period were used to develop
the model.

The ANN model was found to be adequate for predicting the output variables (the
r2 values during the training cycle for these variables HHS, PCW, WW, TW, PW and GW
were 0.999; 1.0; 1.0; 1.0; 0.999; and 0.999, respectively).

Based on the created model, it is predicted that 103,977,000 tons of HHS, 36,818,000 tons
of PCW, 33,689,000 tons of WW, 547,000 tons of TW, 19,870,000 tons of PW and 17,551,000 tons
of GW will be produced in the EU-27 area in 2025. At the same time, it is predicted
that 1,204,000 tons of HHS, 299,000 tons of PCW, 18,000 tons of WW, 4000 tons of TW,
78,000 tons of PW and 80,000 tons of GW will be generated in Croatia in 2025. The
aforementioned predictions could help in the establishment and improvement of the
separate waste collection system, which would consequently lead to more efficient recycling
and the achievement of the set goals of recycling 55% of municipal waste by 2025.

The results also showed that the most pronounced positive effects on the amount
of waste generated were the variables YEAR, GDP, EGS, IGS, WS, SIP, ATA, NST and
EOP, which confirmed that gross domestic product, tourism and income have the most
pronounced positive impact on the amount of MSW generated.

In order to minimalize negative impact of GDP, earnings and tourism on waste genera-
tion and to improve the waste management system, special attention should be directed to
eco-tourism, increasing the awareness of citizens with a particular emphasis on preventing
the generation of waste in order to reduce the effect of GDP on the generated waste. Re-
cently, more and more attention has been paid to the research of ANN as a tool to predict
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waste generation, mainly due to the simplicity, accuracy and high error tolerance that
allows ANN to work with imperfect or deficient data. It is the quality of the input data that
greatly affects the degree of accuracy and future research is needed with a new increased
set of input data.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su141610133/s1, Table S1: input variables for the ANN model;
Table S2: output variables for the ANN model.
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Nomenclature

AARD—average absolute relative deviation (%), ABH—available beds in hospitals, ANN—
artificial neural networks, ATA—arrivals in collective accommodation establishments, BFGS—Broyden–
Fletcher–Goldfarb–Shanno algorithm, CNT—country, DISP—disposal–landfill, EGS—exports of
goods and services, ELP—education level: less than primary, primary and lower secondary education,
ELS—education level: upper secondary, post-secondary non-tertiary and tertiary education, ELSP—
education level: upper secondary and post-secondary non-tertiary education, ELT—education level:
tertiary education, EMP—employed persons, EOP—exports of petroleum and petroleum products to
partner countries, EU—European Union, GDP—gross domestic product, GMWK—municipal solid
waste generation, kilograms per capita, GMWT—municipal solid waste generation, thousand tons,
GW—glass waste, HHS—household and similar waste, IGS—imports of goods and services, LE—life
expectancy, MBE—mean bias error, MEI—median net equivalized income, MLP—multilayer percep-
tron network, MPE—mean percentage error, MSW—municipal solid waste, NST—overnight stays
in collective accommodation establishments, PCW—paper and cardboard waste, POP—population,
PRP—people at risk of poverty or social exclusion, PW—plastic waste, r2—coefficient of determina-
tion, RBW—recycling of bio-waste (composting and anaerobic digestion), RGDP—GDP per capita,
RMSE—root mean square error, RRMW—recycling rate of municipal waste (%), SIP—secondary in-
come: personal transfers, current transfers between resident and non-resident households, SOS—sum
of squares, SSE—sum of squared errors, TEMP—total employed persons aged 15–64, TW—textile
waste, WS—wages and salaries, WW—wood waste, χ2—reduced chi-squared.
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of pork meat cubes osmotic dehydratation. Hem. Ind. 2013, 67, 465–475. [CrossRef]
44. Emadaldin Mohammadi, G.; Behnood, A. Application of soft computing methods for predicting the elastic modulus of recycled

aggregate concrete. J. Clean. Prod. 2018, 176, 1163–1176.
45. Ochoa-Martínez, C.I.; Ayala-Aponte, A.A. Prediction of mass transfer kinetics during osmotic dehydration of apples using neural

networks. LWT-Food Sci.Technol. 2007, 40, 638–645. [CrossRef]
46. Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A. 2007, 1158,

196–214. [CrossRef]
47. Doumpos, M.; Zopounidis, C. Preference disaggregation and statistical learning for multicriteria decision support: A review.

Eur. J. Oper. Res. 2011, 209, 203–214. [CrossRef]
48. Taylor, B.J. Methods and Procedures for the Verification and Validation of Artificial Neural Networks; Springer Science & Business Media:

New York, NY, USA, 2006.
49. Yoon, Y.; Swales, G.; Margavio, T.M. A Comparison of Discriminant Analysis versus Artificial Neural Networks. J. Oper. Res. Soc.

2017, 44, 51–60. [CrossRef]
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