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Abstract: Miscanthus is a perennial energy crop that produces high yields and has the potential to 

be converted into energy. The ultimate analysis determines the composition of the biomass and the 

energy value in terms of the higher heating value (HHV), which is the most important parameter in 

determining the quality of the fuel. In this study, an artificial neural network (ANN) model based 

on the principle of supervised learning was developed to predict the HHV of miscanthus biomass. 

The developed ANN model was compared with the models of predictive regression models (sug-

gested from the literature) and the accuracy of the developed model was determined by the coeffi-

cient of determination. The paper presents data from 192 miscanthus biomass samples based on 

ultimate analysis and HHV. The developed model showed good properties and the possibility of 

prediction with high accuracy (R2 = 0.77). The paper proves the possibility of using ANN models in 

practical application in determining fuel properties of biomass energy crops and greater accuracy 

in predicting HHV than the regression models offered in the literature. 
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1. Introduction 

Recently, energy crops have been increasingly used as raw materials for energy pro-

duction. Cultivation of energy crops is possible on neglected (marginal) agricultural land 

that is not used for growing food crops. The production of thermal energy from biomass 

is highly efficient and sustainable. The main advantage of using biofuel from biomass is 

the reduction of greenhouse gases due to the neutrality of carbon dioxide. Research on 

energy crops for biomass production shows the possibility of environmental protection 

and economic production efficiency and provides a sustainable way of energy production 

[1]. By using biomass as an energy source, a significant reduction in greenhouse gas emis-

sions can be achieved. For this reason, biomass is considered a good substitute for fossil 

fuels and has been increasingly studied recently [2]. According to the European Commis-

sion (European Commission, Joint Research Centre), biomass is one of the most important 

renewable energy sources in the EU and can provide the possibility of a reliable energy 

supply. Miscanthus is an energy crop used to produce biomass, and its cultivation pro-

vides high yields per unit area. Miscanthus is a perennial energy crop with low agrotech-

nical requirements and can be grown on marginal soils. The quality of biomass-derived 

fuels is influenced by the physical and chemical properties of the biomass. The content of 

carbon, hydrogen, nitrogen, sulfur, and oxygen determined by ultimate analysis are im-

portant chemical parameters that affects the quality of the fuel [3]. 
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Ultimate analysis is important in determining the fuel properties [4]. The heating 

value indicates the heat energy generated during combustion. HHV is an important en-

ergy property of fuels that defines the energy efficiency of feedstock use and it is influ-

enced by the chemical composition of the raw material. HHV is an important aspect in 

evaluating the energy properties of biomass [5]. Biomass is composed of various elements, 

but carbon, hydrogen, and oxygen make up a majority (97–99%) of the biomass content 

[5]. Empirical methods for determining the composition and energy properties of biomass are 

time-consuming and costly, so mathematical models have recently been developed that can 

facilitate the prediction process. In determining the combustible properties of energy crops, 

prescribed laboratory methods are used that provide high precision of the final results. Re-

cently, machine learning techniques have been increasingly used in the prediction of HHV 

biomass. In research by Dai et al., [6] extreme learning machine (ELM) was used as techniques 

with a signal forward neural network architecture to determine HHV biomass. The model 

used shows high accuracy in predicting biomass fuel values. Knowing this, ANN can be used 

as a mathematical tool for predicting the energy properties of biomass [7]. ANN as a form of 

non-linear models can calculate the HHV of miscanthus biomass, based on ultimate analysis, 

with high precision and are recognized as a potential method for predicting biomass heating 

value and reducing the time and cost of the process [8]. 

ANN belong to the field of artificial intelligence and have recently been increasingly 

used as a mathematical tool that enables predictions with great precision. ANN have sev-

eral advantages over regression-based models. They can handle a large amount of aggre-

gated data and can detect nonlinear relationships between dependent and independent 

variants as well as possible interactions between variables [9]. The application of ANN as 

a model for biomass research is still at an early stage, but over time there is growing in-

terest in its use [10]. Özveren [11] conducted research in which an ANN model was de-

veloped as an artificial intelligence model for predicting biomass with higher heating val-

ues. The research shows the practical use of applying the ANN model as a method for 

predicting the energy values of biomass. Olatunji et al. [12] used ultimate analysis data of 

different types of waste in their research and developed the ANN model to predict the 

HHV. The model was used to predict energy properties to evaluate the possibility of con-

verting waste into useful energy. Research has shown that algorithms can be successfully 

used in determining these properties. In a study conducted by Kartal & Özveren [13], an 

ANN model was developed to predict the gasification performance of different types of 

biomass. The developed model successfully simulated the vegetation process with an ac-

ceptable margin of error. The model also proved successful in predicting the calorific 

value of different biomass samples. Before creating an ANN, the data used for model must 

be divided into sets for training, testing, and validation. In several studies conducted us-

ing ANN models for prediction, the authors divided data sets in the ratio of 70% for train-

ing, 15% for testing, and 15% for model validation [14,15]. 

The aim of this work was to develop a ANN model for predicting HHV of miscanthus 

biomass based on ultimate analysis. In addition, already developed regression models for 

prediction of HHV were collected from the literature and used for the calculations. The 

input data used for ANN and the predictive regression models were based on the ultimate 

analysis and included data on the percentage of nitrogen (N), carbon (C), sulfur (S), hy-

drogen (H), and oxygen (O). ANN was developed using the principle of supervised learn-

ing and compared the obtained data on predicted HHV with the experimentally obtained 

data on HHV. Yoon’s interpretation method was used to determine the relative im-

portance of the input parameters in the ANN model calculations. Dashti et al. [8] states 

that it is of great importance to determine the factors of relevance (influence) of input 

variables on the target result. Noushabadi et al. [16] states that the relevance factor shows 

the influence of the elements of ultimate analysis (C, H, N, S, and O) on HHV. Positive 

and negative values of each parameter are the result of an increase or decrease of the input 

parameter on the output. The main objective of the study was to obtain an empirical model 
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for predicting HHV values based on the input data of the ultimate analysis and to com-

pare the R2 values with existing regression models. 

2. Materials and Methods 

2.1. Crop Establishment and Data Collection 

Voća et al. [17] stated that the planting of miscanthus was established in 2011 at the 

Grassland Center (Medvednica). It was harvested in March 2020, at the beginning of the 

next growing season. The testing of Miscanthus biomass samples was performed in the 

laboratory of the Faculty of Agriculture in Zagreb. The samples were dried in a laboratory 

dryer. After drying, the samples were ground in a laboratory mill. Each sample was ana-

lyzed three times to ensure accurate analysis. The percentages of C, H, N, and S were 

determined simultaneously using the dry combustion method CHNS analyzer. The calo-

rific value was determined using an oxygen bomb calorimeter, given in MJ/kg in dry mass. 

Data from ultimate analysis and HHV data for miscanthus were collected from the litera-

ture and are presented in Table S1. Data on N, C, S, H, and O were collected for each 

sample, and the values were N (0.031–0.769%), C (49.45–53.42), S (0.055–1.28%), H (5.21–

6.27%), O (39.91–48.92%), and HHV (15.53–19.25 MJ/kg). According to literature data, the 

value of HHV of miscanthus varies between 18.18–18.66 MJ/kg, N 0.28–0.39%, C 46.75–

50%, S 0.13–0.19%, and H 5.76–6.09% [18], which shows that the presented data are in 

range with the data from the literature. 

2.2. Statistical Analysis 

Statistical processing was performed using the software package TIBCO STATIS-

TICA 13.3.0 (StatSoft TIBCO Software Inc., Palo Alto, CA, USA). The analyzed data are 

presented as means with standard deviation. Analysis of variance (ANOVA) with Tukey’s 

HSD post hoc test to compare sample means was used to examine variation in observed 

parameters. 

To show the performance of the developed ANN model and predictive regression 

models for calculating HHV with ultimate analysis inputs (N, C, S, H, and O), it is neces-

sary to calculate statistical parameters: reduced chi-square (x2) (Equation (1)), root mean 

square error (RMSE) (Equation (2)), coefficient of determination (R2), mean bias error 

(MBE) (Equation (3)), mean percentage error (MPE) (Equation (4)), and sum of squared 

estimate of errors (SSE) (Equation (5)). The RMSE shows the efficiency of the model by 

comparing the predicted values with the already measured values. The value obtained by 

the MBE is used as an indicator of the standard deviation of the predicted values from the 

measured values [19]. The listed parameters are given by the following formula [20]. 

2
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where xexp,i stands for the experimental values and xpre,i is the predicted values calculated 

by the model, N and n are the number of observations and constants, respectively. 
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Yoon’s method of global sensitivity (Equation (6)) was used to calculate the direct 

influence of the input parameters on the output variables, corresponding to the weighting 

coefficients within the ANN model [21]: 

0

0 0

( )

(%) 100%

( )

n

ik kj
k

ij m n

ik kj
i k

w w

RI

w w



 



 







 
(6)

where w—denotes the weighting factor in the ANN model, i—input variable, j—output 

variable, k—hidden neuron, n—number of hidden neurons, m—number of inputs. 

2.3. ANN Modeling 

ANN are among the most researched areas of neurocomputing. A multilayer percep-

tron (MLP) is a neural network with hidden layers Figure 1. ANN can adapt its internal 

structure depending on the input data and the final goal of the function. The basic char-

acteristics of ANN are the ability to learn independently, the ability to adapt the system 

to the available information and data processing, and to perform complex mathematical 

operations at high speed. The number of neurons and hidden layers in ANN can vary and 

is determined by the trial-and-error method [11]. Neural networks are categorized by their 

architecture, topology, and learning mode [22]. Neural networks take inputs, compute 

them, and convert them into outputs. This process is called the learning process of the 

network. The learning process of ANN can be supervised and unsupervised. In super-

vised learning mode, the model has access to output data for computations, while in un-

supervised mode, there is no output data [23]. 

 

Figure 1. Structure of 5-11-1 ANN. 

Models of ANN can provide a link between input and output data without using a 

complicated type of computational method. MLP ANN is recognized as the most effective 

type of ANN [9,24]. ANN is a mathematical structure developed from the motivation of 

the learning process in the human brain. ANN is a promising modeling technique for da-

tasets with nonlinear relationships. Multilayer feedforward networks (MLP-ANN) consist 
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of interdependent units (neurons). These neurons are arranged in the form of layers (in-

put, hidden, and output layers). The number of neurons and hidden layers varies and can 

be determined by the method of trial and error so that the model error is minimal [11]. 

The data used for ANN were collected from the literature and were randomly di-

vided into sets for training (70%), testing (15%) and validation (15%). ANN model was 

trained 100,000 times with a random number of hidden layers (1–20), and duration of cre-

ating the model was 27 min. The model was created on a computer with an Intel i5 pro-

cessor (12th Gen Intel(R) Core(TM), i5-12400F, 2.50 GHz) and 8 GB of RAM. 

Different transfer functions and random values for weighting coefficients and bias 

were used. Training of the network data was set up during the ANN learning cycle to 

determine the number of neurons and adjust the weight coefficients in each neuron [25]. 

The biases and weight coefficients related to the hidden and the output layers of the model 

are represented in the matrices and vectors W1 and B1 and W2 and B2, respectively [26]. 

The neural network model can be represented in matrix notation: Equation for calculating 

the output data (Equation (7)) of the neural network [27]: 

1 2 2 1 1 2( ( ) )Y f W f W X B B      (7)

where Y represents the output value, f1 and f2 represent the transfer function in the hidden 

and output layer, X represents the matrix of the input layer [28]. 

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was used for the calcula-

tions. The BFGS algorithm is one of the most effective algorithms for optimization and can 

be successfully used for the optimization of multivariate problems [29]. 

2.4. Regression Models 

Table 1 presents the models of the proposed equations for the calculation of HHV 

biomass found in the literature [5,30,31]. The models are based on establishing relations 

between variables based on ultimate analysis and HHV output values. 

Table 1. List of equations for calculating HHV. 

Sr.no. Proposed Equations from the Literature Reference 

1 HHV a b C    [31] 

2 H H V a b H    [31] 

3 H H V a b O    [31] 

4 
O

HHV a b
C

    [31] 

5 
H

HHV a b
C

    [31] 

6 2 2HHV a b C c H d C e H          [31] 

7 
2 2

O H O H
HHV a b c d e

C C C C

   
           

   

 [31] 

8 HHV a C b    [5] 

9 2HHV a b C c C d H e C H g N             [30] 

10  
2

HHV a b C    [31] 

3. Results 

Table 2 shows the mean values of the variables of the ultimate analysis and HHV 

with standard deviation and Tukey’s HSD test of miscanthus. 
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Table 2. Average values of nitrogen, carbon, sulfur, hydrogen, and oxygen of investigated biomass 

of miscanthus. 

Sample N C S H O HHV 

MxG1 0.24 ± 0.15 a 51.49 ± 0.58 a 0.11 ± 0.04 a 5.82 ± 0.32 a 42.33 ± 0.74 a 18.21 ± 0.54 a 

MxG2 0.19 ± 0.13 a 51.3 ± 0.53 a 0.14 ± 0.06 a 5.85 ± 0.2 a 42.53 ± 0.42 a 18.16 ± 0.37 a 

MxG3 0.23 ± 0.15 a 50.9 ± 0.96 a 0.14 ± 0.06 a 5.82 ± 0.2 a 42.91 ± 0.89 a 18.22 ± 0.58 a 

MxG4 0.22 ± 0.13 a 51.75 ± 0.73 a 0.21 ± 0.3 a 5.83 ± 0.33 a 41.99 ± 0.69 a 18.24 ± 0.64 a 

MxG5 0.2 ± 0.09 a 51.38 ± 0.8 a 0.14 ± 0.08 a 5.84 ± 0.33 a 42.44 ± 0.82 a 18.37 ± 0.48 a 

MxG6 0.31 ± 0.21 a 51.53 ± 0.86 a 0.21 ± 0.2 a 5.89 ± 0.23 a 42.06 ± 0.88 a 18.45 ± 0.61 a 

MxG7 0.2 ± 0.13 a 51.33 ± 0.93 a 0.12 ± 0.09 a 5.82 ± 0.33 a 42.54 ± 0.92 a 17.97 ± 0.73 a 

MxG8 0.2 ± 0.11 a 51.65 ± 1.33 a 0.11 ± 0.06 a 5.88 ± 0.27 a 42.16 ± 1.18 a 18.23 ± 0.64 a 

MxG9 0.21 ± 0.12 a 51.76 ± 0.77 a 0.13 ± 0.05 a 5.85 ± 0.35 a 42.05 ± 0.86 a 18.35 ± 0.32 a 

MxG10 0.18 ± 0.1 a 51.48 ± 0.97 a 0.11 ± 0.05 a 5.83 ± 0.33 a 42.4 ± 0.85 a 18.1 ± 0.61 a 

MxG11 0.22 ± 0.16 a 51.09 ± 1.14 a 0.11 ± 0.05 a 5.85 ± 0.27 a 42.74 ± 1.12 a 18.06 ± 0.33 a 

MxG12 0.19 ± 0.11 a 51.6 ± 0.82 a 0.12 ± 0.06 a 5.86 ± 0.35 a 42.24 ± 0.97 a 18.51 ± 0.5 a 

MxG13 0.27 ± 0.22 a 51.15 ± 0.8 a 0.15 ± 0.09 a 5.79 ± 0.36 a 42.64 ± 0.86 a 18.24 ± 0.6 a 

MxG14 0.2 ± 0.14 a 51.53 ± 0.82 a 0.09 ± 0.03 a 5.31 ± 1.71 a 42.86 ± 2.12 a 17.83 ± 0.81 a 

MxG15 0.25 ± 0.15 a 51.73 ± 0.99 a 0.12 ± 0.05 a 5.83 ± 0.38 a 42.08 ± 1.19 a 18.09 ± 0.4 a 

MxG16 0.18 ± 0.12 a 51.11 ± 1.12 a 0.11 ± 0.05 a 5.83 ± 0.33 a 42.77 ± 1.15 a 18.02 ± 0.43 a 

N—Nitrogen (%); C—Carbon (%); S—Sulfur (%); H—Hydrogen (%); O—Oxygen (%). The means in 

the same row (various samples), with different lowercase superscripts, are statistically different (p 

≤ 0.05), according to Tukey’s HSD test. 

Table 2 shows the differences in the percentages of nitrogen, carbon, hydrogen, sul-

fur, and oxygen and is expressed as mean and standard deviation. The prefabricated sta-

tistical analysis shows that the observed values between the samples are not statistically 

significant (statistically significant at p ≤ 0.05). Higher content of C and H components 

leads to a higher total value of HHV [32]. The sample MxG 6 has the highest average 

content of N (0.31%) and H (5.89%) and a higher value of HHV (18.45 MJ/kg). The sample 

MxG 14 has the lowest average percentage value of elements S (0.09%) and H (5.31%) and 

the lowest value of HHV (17.83 MJ/kg). The average values in the paper are: 0.22% N, 

51.42% C, 0.13% S, 5.80% H, 42.42% O and 18.18 MJ/kg for HHV. 

The correlation analysis of the parameters of ultimate analysis and HHV was per-

formed via Rstudio and related packages (corrplot). 

The diagram of the correlation matrix shows the correlation coefficients between the 

variables. Positive values of the correlation coefficient are shown in blue, while negative 

values are shown in red. The intensity of the color in the circle is proportional to the cor-

relation coefficient. In Figure 2, it can be observed that the elements O, S, and N are posi-

tively correlated with the value of HHV, while C and H are negative. It can be seen that 

variable S has the highest positive correlation coefficient, i.e., a significant influence on 

HHV, while variables N and O also have positively correlated values, but less influence 

on HHV. The variable H in the correlation graph shown has a negative correlation value 

on HHV. Based on Figure 2, HHV is best correlated with the concentrations of H, S, and 

N (when the blue color is shown, it is a positive correlation). 
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Figure 2. Correlation plot of observed values. 

After determining the mean of all parameters, the correlations of the variables and 

their contribution were determined. The influence of the variables (N, C, S, H, O, and 

HHV) and the samples are combined graphically. 

Principal Component Analysis (PCA) is used in the search for orthogonal directions 

of greatest dispersion of given data with the task of finding patterns in the distribution of 

individual data with respect to the original data defined in a space with multiple dimen-

sions [33]. The analysis is also used to build predictive models, and it is easy to interpret 

the impact of individual variables on a given value. In Figure 3, the right side of the dia-

gram shows sample 6, which is significant and has the highest values for HHV, H, N, and 

S. The upper part of the diagram shows samples 9, 8, 12, 15, 4 with the highest content of 

C. On the left side of the diagram are samples 14, 16, 11, 3, which have the highest content 

of O. According to the PCA analysis, the parameters N, S, H and HHV have the greatest 

influence on the data. 

 

Figure 3. PCA of observed values. 
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4. Discussion 

4.1. Prediction of HHV Using Developed Regression Models 

Table 3 shows the calculated statistical test of “goodness of fit” for the proposed mod-

els to calculate the HHV value based on ultimate analysis. 

Table 3. Statistical test goodness of fit (developed regression models). 

Model x2 RMSE MBE MPE SSE R2 Skewness Kurtosis SD Variance 

Model 1 0.31 0.01 0.01 854.24 59.66 0.00 −0.63 1.47 0.56 0.31 

Model 2 0.19 0.01 0.01 578.45 35.56 0.40 −1.32 9.26 0.43 0.19 

Model 3 0.30 0.01 0.01 810.35 57.95 0.03 −0.67 2.10 0.55 0.30 

Model 4 0.31 0.01 0.01 830.08 58.92 0.02 −0.65 1.81 0.56 0.31 

Model 5 0.19 0.01 0.01 623.98 36.77 0.38 −1.19 6.78 0.44 0.19 

Model 6 0.22 0.01 0.01 582.07 42.91 0.36 −1.53 12.54 0.47 0.22 

Model 7 0.19 0.01 0.01 585.55 35.77 0.40 −1.28 8.67 0.43 0.19 

Model 8 0.31 0.01 0.01 854.24 59.66 0.00 −0.63 1.47 0.56 0.31 

Model 9 0.17 0.01 0.01 526.96 31.57 0.47 −1.79 13.09 0.41 0.17 

Model 10 0.31 0.01 0.01 853.32 59.64 0.00 −0.63 1.49 0.56 0.31 

ANN 0.07 0.27 -0.03 1.10 13.74 0.77 0.53 2.29 0.27 0.07 

x2—reduced chi-square, RMSE—root mean square error, R2—coefficient of determination, MBE—

mean bias error and MPE—mean percentage error, ANN—artificial neural network. 

The regression models offered from the literature use a different number of input 

variables of the ultimate analysis. Models 1,2,3,8,10 use one, while models 4,5,6 use two 

input variables. The highest number of input data is used by regression models 7 and 9, 

where the number of input variables is three. In contrast to the equations offered to calcu-

late the HHV, ANN uses all five input variables of the ultimate analysis and shows the 

highest accuracy in prediction. The presented models in the calculations did not show 

sufficient accuracy and precision to be used as a reliable method for predicting HHV bio-

mass of miscanthus. The coefficient of determination (R2) was used as the most important 

statistical parameter to evaluate the suitability of the mathematical models, which was 

lowest for model 1, 8 and model 10 (R2 = 0.00) and highest for model 9 (R2 = 0.47) in the 

calculations for 10 different models. The reliability of the regression models and ANN is 

ensured by the parameters MPE, SSE and R2, but other parameters (for most models) also 

show good performance. The calculated statistical parameter x2 shows good performance 

in models 2,5,7 (0.19) and in model 9 (0.17). For the above-mentioned reason, it is neces-

sary to consider several statistical parameters when evaluating performance of the model. 

4.2. ANN Model 

In developing the model ANN, the input variables (N, C, S, H, and O) and the output 

value (HHV) had to be determined. The weights and biases were determined randomly 

by looking for values that would make the model accurate enough to predict the output. 

The ANN model developed for the prediction of HHV showed a good ability to gen-

eralize data and predict. The model showed the best performance with 11 neurons in the 

hidden layer within the network, where a high R2 value (0.77 overall) and an overall low 

sum of squares value (SOS) were achieved during the training cycle (Table 4). 

  



Mathematics 2022, 10, 3732 9 of 12 
 

 

Table 4. Weights and biases of input and output layer. 

Input Layer Output Layer 

Weight Bias Weight Bias 

N C S H O  HHV  

−1.74 10.34 −30.08 −7.41 1.90 1.62 −1.76 2.06 

−0.28 3.37 1.69 2.99 −4.61 −0.37 1.18  

2.58 −0.83 −5.02 −0.40 −0.37 −1.56 0.20  

4.23 −0.73 −6.78 −0.79 0.10 −1.40 −0.31  

10.55 −3.52 −15.48 12.93 −0.96 −2.58 −1.91  

1.08 1.54 1.49 −2.03 −3.48 −1.57 −0.44  

3.56 −2.75 −8.74 1.54 1.03 −2.09 −1.30  

−3.67 1.30 2.92 2.02 −2.74 −0.87 0.48  

−2.72 −0.49 6.47 −0.49 0.34 0.75 −0.60  

2.25 2.01 6.90 −5.15 1.20 3.20 0.47  

−1.14 1.93 2.53 0.98 −1.49 0.71 −1.56  

MLP-ANN (Multi-layer perceptron Artificial neural network) is one of the forms of 

ANN that are mostly used in applications for solving nonlinear equations [34]. Table 4 

shows the weight coefficients and biases of the developed MLP-ANN network model. It 

can be seen that the best results were obtained with a hidden layer with a number of 11 

hidden neurons, where the experimental values of HHV best match the values of HHV 

calculated with the ANN model. 

Table 5 shows the training, test and validation performance of the model ANN, ex-

pressed by the coefficient of correlation and by the training (0.042), test (0.026), and vali-

dation (0.021) error of the model. Table 3 shows the results of the statistical test indicating 

the deviations between the observed values and the expected values. The values shown 

indicate the ability of the algorithm to predict according to the given model data. 

Table 5. Summary of ANN. 

Net. Name 
Train. 

Perf. 

Test 

Perf. 

Valid. 

Perf. 

Train. 

Error 

Test 

Error 

Valid. 

Error 

Train. 

Algorithm 

Error 

Function 

Hidden 

Activation 

Output 

Activation 

MLP 5-11-1 0.861 0.902 0.951 0.042 0.026 0.021 BFGS 71 SOS Tanh Logistic 

Train.—Training; Perf.—Performance; Valid.—Validation. 

Therefore, the ANN structural model MLP 5-11-1 proved to be sufficiently accurate 

to predict HHV based on the N, C, S, H, and O contents. The training (0.861), test (0.902) 

and validation (0.951) performance values shows that the model is able to predict values 

almost equal to the measured values. 

Scatterplot is one of the most common visualization techniques, and displays and 

displays the behavior of the entered data [35,36]. Figure 4. shows the data of the predicted 

HHV versus the target HHV, which largely shows the overlap. 
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Figure 4. Predicted HHV vs. target HHV. 

The calculated parameters comprising the statistical test “goodness of fit” are shown 

in Table 3. The reported values of x2 (0.07), RMSE (0.27), MBE (−0.03), MPE (1.10), SSE 

(13.74), and R2 (0.77). The residual analysis also yielded the parameters skewness (0.534), 

kurtosis (2.293), standard deviation (0.269), and variance (0.072). Conducted analysis 

shows that the model has good predictive accuracy. 

The range in which the relevance factor is determined is between −1 and +1. The in-

crease of HHV is mainly influenced by the increase of the parameter S. The influence of 

input variables was studied according to Yoon’s interpretation method for parameters N, 

C, S, H, O. In Figure 5 is the influence of variables N (−20.64 %), C (3.13 %), S (68.89 %), H 

(−3.07 %), and O (−4.27%) on the target value of HHV. In Figure 5, it can be seen that the 

parameters C and S have positive values of relative importance for the variable HHV, 

while the values of N, H, and O have a negative influence and are not factors of relative 

importance in determining the value of HHV. Looking at the calculation of the input data 

carried out according to Yoon’s method of interpretation based on the ultimate analysis 

the positive variable S have the greatest influence on the determination of the output val-

ues of HHV. 

 

Figure 5. Relative importance of variables on HHV. 

The predictive regression models offered in the literature are used as nonlinear mod-

els to predict HHV biomass of miscanthus. As shown in the paper, the use of the predic-

tive models does not provide suitability and sufficient accuracy in determining the HHV 

miscanthus with respect to the input parameters. Using ANN as a nonlinear model to 

determine the HHV value provides a more convenient way of prediction and provides 

more accurate weighting coefficients and biases, which are the basis for establishing rela-

tions between input parameters and output data. 
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5. Conclusions 

The use of ANN models to predict the energy properties of biomass has been increas-

ingly explored recently. The main point of the study is the creation of an improved model 

(in the form of ANN) compared to existing literature regression models, as evidenced by 

a higher R2 value. The calculations performed according to the proposed non-linear math-

ematical models are not suitable enough to predict the HHV biomass of miscanthus (R2 ≤ 

0.47). Incorporating available data from the ultimate analysis of miscanthus the developed 

neural network model showed high accuracy in predicting the higher heating value (over-

all R2 = 0.77). The factors N, C, S, H, and O influence the value of HHV. In the developed 

model, the increase in HHV is mainly influenced by the increase in the values of the pa-

rameter S. Although these models are not yet widely used as mathematical models for 

prediction (especially for variables that have nonlinear relationships), they offer the pos-

sibility of obtaining the desired result with less time, lower cost, and satisfactory accuracy, 

which can replace existing empirical methods. The developed model will be able to make 

more accurate predictions as more input data is collected. Future plans are to expand the 

database (literature sources and experimental data) and the development of new models 

such as Random Forest Regression and Support Vector Machine. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/math10203732/s1, Table S1. Result of ultimate analysis and 

HHV of miscanthus biomass. 
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